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Abstract

We solve the open problem of bounding the VC-dimension of inflated polynomi-
als. To achieve this bound, we use the decidability algorithms for existential theory
of the reals. Further, our results are generalized to give an upper bound on the VC-
dimension for all semialgebraic sets constructed from a finite set of bounded degree
polynomials. The VC-dimension of a geometric object, represented by a range space,
encodes its geometric complexity. The VC-dimension of range spaces has applications
towards the learnability of corresponding function classes within computational learn-
ing theory. Finally, VC-dimension is important in probability theory, computational
geometry, and model theory.
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ABSTRACT

We solve the open problem of bounding the VC-dimension of inflated polynomials.

To achieve this bound, we use the decidability algorithms for existential theory of the

reals. Further, our results are generalized to give an upper bound on the VC-dimension

for all semialgebraic sets constructed from a finite set of bounded degree polynomials. The

VC-dimension of a geometric object, represented by a range space, encodes its geometric

complexity. The VC-dimension of range spaces has applications towards the learnabil-

ity of corresponding function classes within computational learning theory. Finally, VC-

dimension is important in probability theory, computational geometry, and model theory.
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CHAPTER 1

INTRODUCTION

A bound of VC-dimension for different objects is of interest in the study of probability

theory [14], computational learning theory [1], model theory [2], [3], and computational

geometry [8]. The Vapnik-Chervonenkis-dimension (VC-dimension) viewed from a geo-

metric perspective is a measurement of the underlying complexity of a set system [10],

which we will define with an object called a range space. There is prior work on de-

veloping methods for bounding VC-dimension [1], [10], although these methods can be

insufficient when bounding more complex range spaces. Our work uses these traditional

tools along with algorithms in algebraic geometry to bound VC-dimension of complex

range spaces. As mentioned, the study of VC-dimension is important to many fields. In

bounding large and complex range spaces the opportunity for applications to these fields

increases.

These traditional tools, circuit and composition arguments, are also not well-suited

for evaluation of distance. Specifically, the square root operation needed for Euclidean

distance is not included in the set of allowed operations for a circuit argument. Perhaps

justified by this limitation bounding the VC-dimension of range spaces which involve Eu-

clidean distance is not well developed. Therefore, in [6] an open problem was established

to bound the VC-dimension of a set of inflated polynomials. Inflated polynomials are

polynomials with a tubular neighborhood. For example, an inflated quadratic polynomial

is a parabola shaped “band” through the plane. The study of inflated polynomials are

important objects to study because polynomials are more complex than half-spaces and

they encode Euclidean distance. We solve this problem by providing an upper and lower

bound for the inflated polynomial range space. The methods we use are general, which is

demonstrated by bounding the VC-dimension of semialgebraic sets.

In particular we consider semialgebraic sets composed of a finite set of bounded de-
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gree polynomials. These sets are equivalent to finite union of polynomial equalities and

inequalities. The VC-dimension of this space is finite and therefore learnable. As this

function class is large the opportunities to reduce other problems to semialgebraic sets is

present.

Through this work we have developed a connection between decidability algorithms

in logic and VC-dimension using the circuit argument technique. The circuit argument

bounds VC-dimension of a range space based on the number of simple operations required

to perform a decision procedure to evaluate inclusion of a point. We can build these

decision procedures using algorithms from algebraic geometry and, in the process, receive

bounds on the simple operations involved. There are more potential applications to be

found through studying the connections of logic, specifically decidability procedures, and

VC-dimension.

We also detail several applications of our results. VC-dimension establishes conditions

for learnability and existence of #-nets. Specifically, we provide the sample complexity

of inflated polynomials, inflated splines, and semiagebraic sets. We also briefly detail

applications to smoothed range spaces, which has applications to range spaces involving

noise and regression.

The remaining chapters will continue as follows. First, we will consider the relevant

definitions, theorems and algorithms already established in several fields. Next, we will

give proofs for our results. Finally, we give a detailed account of the applications of our

work.



CHAPTER 2

BACKGROUND, DEFINITIONS, AND PRIOR

WORK

In our proofs we will need some established results from several fields. First, we will

define terms from logic and computational geometry. Second, we include the theorem

that is primarily used for bounding sample complexity with VC-dimension. Third, in our

constructivist proof of a lower bound on the VC-dimension of inflated polynomial range

space we will need multivariate Lagrange interpolation. Next, the important circuit and

composition arguments are detailed with examples. Then, we provide a prior connection

established between the square root operation and circuit arguments. Finally, we define

algebraic and algebraic sets and give several algorithms that operate on these sets.

2.1 Definitions
Central to our study are polynomials with real coefficients.

Definition 1 (Real Polynomials). The set of all polynomials over the reals is R[X1, . . . , Xd].

Where the degree of any polynomial is the maximum sum of the exponents of the variables, X1, . . . , Xd

in any monomial.

There are several ways to view polynomials.

• The set of all d-variate polynomials with real coefficients

• Curves in (d + 1) space

• Functions Rd 7! R

A common operation between two sets is Minkowski addition.

Definition 2 (Minkowski Addition). Given sets A, B 2 Rd, the Minkowski sum is the set

A � B = {a + b | a 2 A, b 2 B}
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Extending the perspective of polynomials as curves in Rd+1 we will define inflated

polynomials as the Minkowski sum of a disk and a polynomial.

Definition 3 (Inflated Polynomials). Let Md be the set of all possible Minkowski additions

between a disk of variable radius and polynomials of bounded degree p. That is,

Mp = {R[X1, . . . , Xd]� D̄d+1
r | r 2 R, p 2 N}

where D̄d+1
r is a (d + 1)-dimensional disk with radius r.

A range space is a useful object in the study of sets of sets. That is, sets that contain

other sets.

Definition 4 (Range space). A range space is a tuple (X,R), where X is called the ground

set and R is called the range set, where all sets in the range set are a subset of the ground set.

Similar to a restriction over a set of functions to a subset of the functions domain, we will define

R|Y := {R \ Y | R 2 R}, for Y ✓ X [10].

R is often defined in terms of geometric objects. R could be the set of disks on R2,

intervals on R, or more complex structures as polynomials in Rd. Intuitively, polynomials

are more complex than intervals, it is natural to want to define a measurement of this

underlying complexity. The VC-dimension is a classic measurement of the underlying

expressiveness of the range set [10]. First, we need to define shattering a set.

Definition 5 (Shattering). Consider, a range space (X,R), with the projection R|Y. If R|Y

contains all subsets of Y then it is said that R shatters Y [10].

If m = |Y| then the behavior of R|Y may change as m becomes large. That is R may

cease to shatter Y for large enough m. Intuitively, more expressive range sets will continue

to shatter large m while their more simple counterparts are unable to do so. This gives us

the VC-dimension:

Definition 6 (VC-dimension). VC-dimension of (X,R) is the maximum cardinality of a shat-

tered subset of X [10].

By way of example [10]:
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• The set of disks over R2 has VC-dimension 3

• The set of intervals over R has VC-dimension 2

• The set of all polynomials in Rd has VC-dimension •

• The set of all half-spaces in Rd shatter d + 1

That is, disks are unable to shatter a set of size 4, intervals are unable to shatter sets of

size 3, and half-spaces in R3 are unable to shatter a set of size 5.

We will define the operations allowed by the algorithms here. These operations impor-

tantly do not include a square root.

Definition 7 (Simple Operations). A simple operation is one of the following [1]:

• the arithmetic operations +,�,⇥, and / on real numbers,

• jumps conditioned on >,�,<,,= and 6= comparisons of real numbers, and

• output 0 or 1

Next we will consider definitions specific to logic for which the definitions that the

decidability algorithms are defined. All of this notation is standard in [4].

Definition 8 (P-atom). For our purposes (specifying the field to be R), a P-atom is a polynomial

equality or inequality [4]. They are, if P 2 R[X1, . . . , Xk]:

• P = 0

• P 6= 0

• P > 0

• P < 0

Definition 9 (P-formula). A P-formula is a combination of ^,_,¬, 8, 9 with P-atoms to form

a logical statement [4].

For example a P-formula could be 8x9y(x2y + 2 > 0 ^ y  0).
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2.2 Sample Complexity
Binary classification, the task assigning points in a space a label in {0, 1}, is used in

research and industry. The algorithm performing the classification is “learning” from

the data. Below is a formal definition of learning from [1] that is used to study this

phenomenon. First, we will need the definition of error with respect to the function the

learning algorithm uses for classification.

Definition 10 (Error of h). With function h : X ! {0, 1} and P a probability distribution on

Z = X ⇥ {0, 1}. The error of h with respect to P is defined as

erP(h) = P{(x, y) 2 Z : h(x) 6= y}

Intuitively we want the learning algorithm to return a function with low error.

Definition 11 (Learning). Suppose that H is a class of functions that map from a set X to {0, 1}.

A learning algorithm L for H is a function

L :
•[

m=1
Zm ! H

from the set of all training samples to H, with the following property:

• # 2 (0, 1)

• d 2 (0, 1)

there is an integer m0(#, d) such that if m � m0(#, d) then,

• for any probability distribution P on Z = X ⇥ {0, 1}

if z is a training sample of length m, drawn randomly according to the product probability distri-

bution Pm, then, with probability at least 1 � d, the hypothesis L(z) output by L is such that

erP(L(z)) < inf
g2H

erP(g) + #

.

This defines what is known as (#, d)-learning H by L, with m0(#, d) called the sufficient

sample size. We want to know how much data a learning algorithm needs to achieve the

desired results. Sample complexity is bounding m0(#, d) for variable # and d.
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Interestingly, the VC-dimension bounds the sample complexity of learning a function

class. Like the definitions above, the theorem below is detailed in [1]. It shows that we can

bound the sufficient sample complexity if we know the VC-dimension of H.

Theorem 1 (VC-Dimension Bounds Sample Complexity). There is a positive constant c such

that the following holds. If H is a set of functions from a set X to {0, 1} and that H has VC-

dimension d � 1, and L is a learning algorithm which minimizes sample error for H, then L is a

learning algorithm for H and its sample complexity satisfies

mL(#, d)  c
#2 (d + ln

1
d
)

2.3 Interpolation
Given a set of points in space, the problem of interpolation is to produce a function

which goes through the provided points. Interpolation is reproduction of a function given

a set of points from domain to range. We will use the following result in the construction

of our lower bound.

Theorem 2 (Multivariate Polynomial Interpolation). We can uniquely interpolate (d+p
p ) points

with a polynomial P 2 R[X1, . . . , Xd] so long as the determinant of the sample matrix for the (d+p
p )

points and is non-zero [13].

The definition of the sample matrix can be found in [13], which corresponds with terms

like full rank and general position. This constraint is listed for rigor’s sake. This is not a

concern for our purposes as it is always possible to pick points where the determinant of

the sample matrix is nonzero.

2.4 Methods of Bounding VC-Dimension
There are two powerful methods for bounding complex range spaces. The first is

composition arguments, where we break the range spaces into more simple parts then

bound via composition. The second is circuit arguments, where computing set inclusion

within a computational framework is used to derive an upper bound for the range space.

The next theorem details the former of these two tools.
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2.4.1 Composition

Theorem 3 (k-fold composition). Let S1 = (X,R1), . . . , Sn = (K,Rn) be range spaces with

VC-dimension d1, . . . , dn, respectively. Next, let f (r1, . . . , rn) be a function that maps any n-tuple

of sets 1 r1 2 R1, . . . , rn 2 Rn into a subset of X. Consider the range set

R0 = { f (r1, . . . , rn) | r1 2 R1, . . . , rn 2 Rn}

and the associtated range space T = (X,R0). Then the VC dimension of T is bounded by O(nd log n),

where d = maxi di [10].

Next I will provide an example of how to use Theorem 3 to bound a range space. As

far as we are aware this proof is original.

Claim 1 (Bound on Simple Polygons). The range space (R2,Pm) where Pm is the set of all

simple polygons 2 with m sides has VC-dimension O(m log m) for m > 3.

Proof. Let B 2 Pn where m > 3. We know that the VC-dimension of convex polygons

with m sides is 2m � 1 [10]. It has been shown that all simple polygons have a triangular

decomposition, consisting of m � 2 triangles [5]. Decompose B into m � 2 triangles. Each

triangle 3 has VC-dimension 7. The set of all triangles bounds the set of all triangles

decomposed from a polygon. By Theorem 3.6 the bound on the set of simple polygons

is O(m log(m � 2)).

Similarly, circuit arguments provide a powerful tool for bounding VC-dimension of

range spaces. This theorem is from the perspective of computational learning theory

which uses function classes. In this case a is in the domain of a polynomial in Rd which

“thresholds” the points in Rd+1.

2.4.2 Circuits

Theorem 4 (Circuit Argument). Suppose h is a function from Rd ⇥ Rk to {0, 1} and let

H = {x 7! h(a, x) : a 2 Rd}

1Recall that Rn is a set of sets for n = 1, . . . , k.

2Recall that a simple polygon is a polygon that does not intersect itself nor has holes.

3This is because triangles are convex with m = 3.
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be the class determined by h. Suppose that h can be computed by an algorithm that takes as input

the pair (a, x) 2 Rd ⇥ Rk and returns h(a, x) after no more than t simple operations. Then

VCdim(H)  4d(t + 2) [1].

There arises a difficulty in applying Theorem 4 to applications in geometry, that is the

lack of a square root operation, which is needed to encode distance into our algorithms.

Thus, when attempting to approach problems like Problem 1, distance between a point

and curve becomes a barrier for applying Theorem 4.

2.5 Results for Combining Distance and Circuit Arguments
Lemma 12 in [9] details the successful evaluation of an inequality involving square

roots using only simple operations. This implies that in some circumstances circuit argu-

ments can be used for evaluating distance and other range spaces involving square roots.

Theorem 5. Consider values a, b, c, d 2 R with b, d � 0. We can compute the truth values of

a +
p

b  c +
p

d and a +
p

b � c +
p

d using O(1) simple operations.

As far as we are aware this is the first use of circuit arguments being applied to eval-

uate expressions with square roots. This theorem is satisfactory for evaluation of a finite

number of points or operations involving lines, for instance when working with polygonal

curves. Yet, there arises difficulty when applying this theorem to the evaluation of a point

and a polynomial as it would require the evaluation of the distances of an infinite number

of points.

2.6 Algorithms in Real Algebraic Geometry
2.6.1 Introduction to Algebraic Sets

Though the algebraic geometry has a reputation for being vast, it can generally be

thought of as the study of the solutions to polynomial systems. As we are working with

polynomials it is reasonable that there are results within the field that could help bound

the VC-dimension of range spaces if those range spaces are partly constructed from poly-

nomials.

If P 2 R[X1, . . . , Xd], an algebraic set (often called an algebraic variety) is

{x | P(x) = 0, for x 2 Rd}
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With this in mind a semialgebraic set is a finite union of polynomial equalities and

polynomial inequalities. For instance:

x2 � y  0 [ x � y > 0

is a semialgebraic set in the plane. Semialgebraic sets are central to our study.

2.6.2 Decidability Theorems and Algorithms

In Basu, Pollack, and Roy’s seminal work Algorithms in Real Algebraic Geometry they

detail a large number of algorithms on real polynomials. We will use a few results from

this work. The first algorithm we will use detailed in [4] is Algorithm 9.5. It is used

for counting roots of a univariate polynomial. The citation includes an extra parameter

Q 2 R[X] that represents a more general query called a Tarski-Query. By taking Q = 1

then a Tarski-query is equivalent to computing the number of roots as given in Sturm’s

theorem. Sturm’s theorem is specifically for univariate polynomials.

Algorithm 1 (Univariate Tarski-Query). Given the following input we can compute the number

of roots of a polynomial in the given complexity:

• Input: p 2 R[X] \ {0}.

• Output: Number of elements in {x 2 R | p(x) = 0}

• Complexity: O(p + 1) simple operations.

Next we will use a result from [4] regarding decidability, specifically over the language

that is the theory of real closed fields. As detailed in [4] Tarski showed that the theory

of the real closed fields is decidable, as a consequence of what is now known as the

Tarski–Seidenberg Theorem. Yet it was only until Collins’ [7] use of cylindrical algebraic

decomposition that a doubly exponential bound was found. Due to this bound it would

not seem to give a good bound in practice.

There is a simpler problem which only allows for existential quantifiers. This problem

is known as the existential theory of the reals, and [4] details an algorithm for its decid-

ability. The complexity below was originally detailed and shown by James Renegar in

[12].
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Consider first order logical statements in the following form:

9X1, . . . 9Xk F(X1, . . . , Xk)

where F(X1, . . . , Xd) is a quantifier free P-formula. If that statement is true or false then

this is called the decision problem for the existential theory of the reals [4]. The next

theorem gives a general and powerful result by showing the existence of an algorithm

for deciding the truth such statements.

Theorem 6 (Existential Theory of The Reals). Let R be a real closed field. Let P ⇢ R[X1, . . . , Xk]

be a finite set of s polynomials each of degree at most p, and let 9X1, . . . 9Xk F(X1, . . . , Xd) be a

sentence, where F(X1, . . . , Xd) is a quantifier free P-formula. There exists an algorithm to decide

the truth of the sentence with complexity sd+1 pO(d) in simple operations.



CHAPTER 3

MAIN RESULTS

3.1 Problem Statement
In [6], Phillips poses the following problem. “Is there a bound on the VC-dimension

of the range spaced defined by shapes formed by the Minkowski sum of a ball and a

polynomial curve?” We detail the problem formally in the next problem.

Problem 1. Let (Rd+1,Mp) be a range space, where Mp is the Minkowski sum of a disk of

any radius and a polynomial P in R[X1, . . . , Xd] where the degree of P is bound by p. Is the

VC-dimension of (Rd+1, Mp) finite, and if so, what is its bound?

Although evaluation of distance is important for geometric applications many of the

existing tools for bounding the VC-dimension are unable to accommodate a square root,

which is needed for Euclidean distance. It is not obvious how to use general circuit

theorems or composition theorems to bound the VC-dimension in such cases.

We could try using Theorem 5, yet attempting to do so leads to performing an infinite

number of operations. This is due to needing to evaluate the distance between a point and

potentially an infinite number of points on the polynomial. We could try a composition

argument yet the boundaries of the inflated polynomials are not polynomials. On the

boundaries of the polynomials if the radius is sufficient there can be non-differentiable

points due to clear “kinks” in the boundary. Thus it is not clear how to deconstruct the

inflated polynomial into component parts. It would seem that other techniques are needed

to determine if there exists a finite bound for the VC-dimension of the inflated polynomial

range space.
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3.2 Our Approach
In fact, the inflated polynomial range space, detailed in Problem 1, does have a finite

VC-dimension. Our general approach for forming an upper bound is to perform a reduc-

tion to either counting roots of a polynomial or a logical decidability question within a

theory that is known to be algebraically decidable with simple operations. Once we have

a bound on the number of simple operations we can bound the VC-dimension using a

circuit argument.

We will bound the VC-dimension of the inflated polynomial range space in two ways.

First, for univariate polynomials we will reduce to real root counting then apply a circuit

argument. Second, for the multivariate case we will reduce to existential theory of the

reals. We include the two methods because we believe it demonstrates the flexibility of

combining the algebraic geometry algorithms with circuit arguments.

We believe there are further results to be found from using such methods. To es-

tablish this point we will show that all semialgebraic sets composed of finite bounded

degree polynomials have finite VC-dimension. This result, through the use of the circuit

argument, establishes a connection between logic, specifically decidability algorithms, and

VC-dimension. As VC-dimension is ubiquitous to other fields like probability and model

theory perhaps there are further connections to establish. In conclusion we have solved

the problem of bounding the VC-dimension of inflated polynomial range space and, in

addition, bounded the VC-dimension of semialgebraic sets.

3.3 Proofs of Upper Bound of VC-Dimension of Inflated Range
Space

First we will perform a reduction of Problem 1 to a problem that is easier to think about.

We will state this result as a lemma.

Lemma 1. Consider range space (Rd+1,Mp). Given a query point w 2 Rd+1 and inflated

polynomial Pr 2 Mp. w is incident with Pr if an only if

9x0 2 P(Rd)(||w � (x0, P(x0))||2  r)

where P is the inflated polynomial of Pr, and (x0, P(x0)) is appending the function value at x0 to

the end of x0.
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Proof. If w is incident with inflated polynomial Pr, then there exists a point x0 2 Rd

where (x0, P(x0)) is on the curve P. w is incident with disk Dr((x0, P(x0))). As w is

within this disk then the distance ||w � (x0, P(x0))||2 must be less than or equal to r.

Conversely, if there exists a point x0 2 P(Rd)(||w � (x0, P(x0))||  r) then w is incident

with Dr((x0, P(x0))) and thus the inflated polynomial Pr.

The above lemma provides us the benefit of only searching for a point on the polyno-

mial that is within a distance r. This could be viewed as an optimization problem. How-

ever finding a point on the polynomial that minimizes the distance is not needed. With this

lemma we will now prove an upper bound on the VC-dimension using a Tarski-query.

3.3.1 Upper Bound of (R2,Mp) with Tarski-Query

Theorem 7. Consider range space (R2,Mp) where Mp is composed of only univariate inflated

polynomials. The VC-dimension of this space is O(p)

Proof. Due to Lemma 1 we must find a point on the polynomial close enough to w.

||w � (x, P(x))||2  r
q
(w1 � x1)2 + (w2 � P(x))2  r

(w1 � x1)
2 + (w2 � P(x))2 � r2  0

Notice that this is a polynomial inequality. As P is defined for all R the distance is un-

bounded. Notice, due to the squared terms, that the final polynomial has even degree.

Therefore, to determine if there exists an x that satisfies the inequality above it is sufficient

to count for roots of the polynomial. By Algorithm 1 we an count roots of univariate

polynomials in O(p + 1)) simple operations, with p the degree of P. Now we will use a

circuit argument, Theorem 4. Recall this bound is established by the number of simple

operations and the number of free variables of the polynomial. In our case the number

of free variables is just 1 and we have p + 1 simple operations. Thus the bound on the

VC-dimension is O(4 · 1((p + 1) + 1) = O(p).

3.3.2 Upper Bound of (Rd+1,Mp) with Existential Theory of The Reals

Now we will generalize to multivariate polynomials by using a decidability algorithm.
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Theorem 8. Consider range space (Rd+1,Mp).

The VC-dimension of this space is

O(dpO(d))

Proof. Consider inflated polynomial Pr of degree p and fix w 2 Rd+1. Due to lemma 1 we

must find a point on the polynomial close enough to w.

||w � (x, P(x))||2  r

q
(w1 � x1)2 + . . . + (wd � xd)2 + (wd+1 � P(x))2  r

(w1 � x1)
2 + . . . + (wd � xd)

2 + (wd+1 � P(x))2 � r2  0

As before this is a polynomial inequality only with more free variables. Now we will

invoke the existential theory of the reals decidability algorithm with Theorem 3.6. To do

this we need to put the final inequality into the logical structure desired by the algorithm.

(9x1) . . . (9xd)(

(w1 � x1)
2 + . . . + (wd � xd)

2 + (wd+1 � P(x))2 � r2 = 0

_ (w1 � x1)
2 + . . . + (wd � xd)

2 + (wd+1 � P(x))2 � r2 < 0

)

⌘

(9x1) . . . (9xd)((w1 � x1)
2 + . . . + (wd � xd)

2 + (wd+1 � P(x))2 � r2 = 0)

_

(9x1) . . . (9xd)((w1 � x1)
2 + . . . + (wd � xd)

2 + (wd+1 � P(x))2 � r2 < 0)

Thus we have 2 d-variate polynomials we must evaluate. The existential theory of the

reals algorithm takes O(pd) simple operations to do evaluate for each P-atom. Now we

will use a circuit argument, Theorem 4. Recall this bound is established by the number

of simple operations and the number of free variables of the polynomial. In our case the
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number of free variables is d and we have O(pd) simple operations. Thus the bound on

the VC-dimension for only one of our P-atoms is

O(4 · d(pd + 1)) = O(dpd)

Finally we use a composition argument, but we only have 2 pieces so it only increases the

VC-dimension by a constant factor. Thus our final VC-dimension bound for (Rd+1,Mp) is

O(2dpd log 2) = O(dpd)

3.4 Lower Bound of (Rd+1,Mp) with Interpolation
We show a tight lower bound of (d+p

p ) where p is the degree of the polynomial and

d is the number of variables in the polynomial. This is not surprising as this is known

how many points a multivariate polynomial can interpolate. In fact, we will shatter a set

using interpolation in the proof below. For this proof we use a multivariate Lagrangian

interpolation detailed by [13].

Theorem 9. Let (Rd+1,Mp) be a range space, where Mp is the Minkowski sum of a ball over

polynomials in R[X1, . . . , Xd] of degree p. The lower bound of the VC-dimension of (Rd+1,Mp)

is (d+p
p ).

Proof. Given (Rd+1,Mp) consider X, a set of points in Rd+1 where |X| = (d+p
p ) points such

that the sample matrix’s determinant as in [13] is nonzero. Let Z be a non empty element

of the power set of X. To intersect all points in Z and none in X \ Z we interpolate over

Z and (d+p
p ) � |Z| perturbed points in X \ Z. We will perturb these points by adding # to

the final component of the points in X \ Z. Let Pr 2 Pp and P be the polynomial from Pr.

Recall that polynomial P is a function from Rd ! R. If we then interpolate using Lagrange

interpolation detailed in [13] over the Z and the perturbed points of X \ Z the function will

not interpolate the original points of X \ Z. We know that this perturbing these points does

not affect existence of the interpolant since changing the final component of our set does

not change the determinant of the sample matrix. Therefore as we can interpolate any

subset of (d+p
p ) points in this way the VC-dimension of the range space must be at least

(d+p
p ).
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Notice that if we are dealing with univariate polynomials then the curve lives in R2

and can shatter according to the above theorem (1+p
p ) = p + 1. Note that this is a lower

bound due to the fact that we are not using the expressiveness of radius of the inflated

polynomial to our advantage. Yet as the modification of the radius affects the inflated

polynomial globally not locally its expressiveness is limited.

3.5 Tight VC-Dimension Bound for Inflated Polynomial Range
Space

We have an upper bound and a lower bound on the VC-dimension of the inflated

polynomial range space. Notice that as the dimension increases the bounds become tighter.

Also notice that we have established q(p) VC-dimension for univariate inflated polynomi-

als.

3.6 Proofs of Upper Bound of VC-Dimension of Semialgebraic
Sets

Besides the dimension of the space there are two factors on the VC-dimension bound

for semialgebraic sets, how many polynomials we use and the maximum degree of those

polynomials. Let us fix s, p 2 N for the number of polynomials and bound on the de-

gree, respectively. As mentioned in the prior chapter all semialgebraic sets are a union

of polynomial equalities and inequalities. The proof technique is to represent the set as

a disjunction of polynomial equalities and inequalities. Then we will use the existential

theory of the reals algorithm on each of these equalities to test satisfiability. We then use a

composition argument to combine all equalities and inequalities.

Theorem 10. The VC-dimension of a semialgebraic set in Rd+1 composed of s polynomials of

bounded degree p is O(sdpd log s).

Proof. Consider P1, . . . , Ps P-atoms, Definition 8, composed of d-variate polynomials and

all bounded by degree p. The set P1 _ . . . _ Ps is semialgebraic. We will ask if the following

sentence is satisfied.

9X1, . . . 9Xd(P1, . . . , Ps)

Use the existential theory of the reals Algorithm on each Pi. This takes O(pd) simple

operations. Therefore, via a circuit argument, the VC-dimension of each P-atom is O(dpd).
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We will then use the composition argument, theorem , to get bounds

O(sdpd log s)



CHAPTER 4

APPLICATIONS

Now we will briefly detail a few applications of this work. First, we will talk about

learnability of a polynomial with margin. Second, we will talk about splines and spline

learnability. Finally, we will cover learnability of semialgebraic sets.

4.1 Inflated Polynomial Classification
The VC-dimension bounds the sample complexity for learning a binary classifier [1].

Polynomials are often used in modeling problems due to their well behaved nature. If we

have a ground function that is approximately polynomial but it has a “margin” similar to

an inflated polynomial then we now have sample complexity bounds for binary classifier.

In particular, here classification is defined for a point as labeling that point 1 if within the

inflated polynomial otherwise 0. By Theorem 1 we know that the sample complexity for

(#, d) learning is bounded by

mL(#, d)  O(
1
#2 (dpd + ln

1
d
))

This also bounds the sample complexity of “smoothed range spaces” [11] with poly-

nomial boundaries; these allow points near the margin to be given a loss in an intuitive

geometric fashion. Previously, the complexity of this problem was unknown.

4.2 Inflated Univariate Spline Classification
An inflated spline is a polynomial spline that has been inflated with radius r. A spline

is a piecewise polynomial. To derive the VC-dimension for univariate splines we must add

two inequalities for each “piece,” where a “piece” in this context is the interval in which

a specific polynomial is defined. Thus for each polynomial the number of inequalities

we need to consider for the existential theory of the reals is three. Thus the complexity

remains the same. Now we must only apply a composition argument over each piece to
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get the VC-dimension. Therefore we find the following bound

O(np lg n)

where n is the number of polynomial pieces used. In addition, like above we have the

complexity for learning inflated polynomial splines.

mL(#, d)  O(
1
#2 (np lg n + ln

1
d
))

This applies immediately to induction of a trajectory. Suppose we are unaware of a

person’s location over time and that we make the modeling assumption that he or she

traced a piecewise polynomial path. A piecewise polynomial curve, perhaps a natural

cubic spline, is a more natural assumption than a piecewise polygonal curve. For example,

we may want to know the path taken by a super-spreader of COVID-19 traveling within

a city containing static points (positions of people) and we believe they traced a spline

path. If someone is within 6 feet, radius of the inflated spline, the bystander is at risk of

infection of the virus. How many people do we need to test (binary classification) to up

to 1 � # accuracy to induce the path the super-spreader took, with probability 1 � d. It

was previously unknown how many people are required to be tested, yet in R2 with n

polynomial pieces each with bounded degree p we know now the bound is

mL(#, d)  O(
1
#2 (np lg n + ln

1
d
))

4.3 Semialgebraic Set learnability
All semialgebraic sets form a large function class, for which we now can bound sample

complexity. If attempting to (#, d)-learn with semialgebraic sets the sample complexity is

the following:

mL(#, d)  O(
1
#2 (sdpd log s + ln

1
d
))

This provides a general result for the union of all polynomial equalities and inequalities.



CHAPTER 5

CONCLUSION

In conclusion, we have developed a new mechanism to bound range spaces involving

polynomials. We solved the open problem of bounding the VC-dimension of inflated

polynomials. We have provided an upper bound for the VC-dimension of semialgebraic

sets. Finally, we established a connection between more abstract fields of logic and com-

putational learning theory.
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